An Artificial Neural Network Classifier for the Prediction of Protein Structural Classes

نویسنده

  • Li Ningbo
چکیده

As there are quite a few difficulties for us to predict a protein structural class directly from its primary sequence, the protein structural prediction based on the predicted secondary structure will undoubtedly be the first choice we would like to take. Protein structural classes are generally defined as four classes: α, β, α/β, α +β. The protein secondary structure describes the local structural conformation of the polypeptide backbone, and it can be obtained fairly accurately from the primary sequence, all of these very features make the protein secondary prediction a critical way to predict the structural class. We constructed a more balanced PSIPRED (a neural network predictor with psi-blast, original method first proposed by Rost & Sander in 1994) algorithm to predict the protein secondary structure. Finally the features about Chaos Game Representation of the predicted secondary structure sequence were selected as the input of neural network classifier. As a result, the predictor has got an overall accuracy score of 71.2% on 40% identity dataset of astral on Structural Classification of Proteins database. Such situation proved that the predictor via secondary structure prediction is an effective approach to classify the structural classes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Linear Regression and Artificial NeuralNetwork for Broiler Chicken Growth Performance Prediction

This study was conducted to investigate the prediction of growth performance using linear regression and artificial neural network (ANN) in broiler chicken. Artificial neural networks (ANNs) are powerful tools for modeling systems in a wide range of applications. The ANN model with a back propagation algorithm successfully learned the relationship between the inputs of metabolizable energy (kca...

متن کامل

Prediction of structural forces of segmental tunnel lining using FEM based artificial neural network

To judge about the performance of designed support system for tunnels, structural forces i.e. peak values of axial and shear forces and moments are critical parameters. So in this study, at first a complete database using finite element method was prepared. Then, a model of artificial neural network (ANN) using multi-layer perceptron was developed to estimate lining structural forces. Sensitivi...

متن کامل

Improving biological activity prediction of protein kinase inhibitors using artificial neural network and partial least square methods

Introduction: Protein kinase causes many diseases, including cancer; therefore, inhibiting them plays an important role in the treatment of many diseases. Traditional discovery inhibitors of this enzyme is a time-consuming and costly process. Finding a reliable computer-aided drug discovery tools which can detect the inhibitors will reduce the cost. In this study, it is attempted to separate ki...

متن کامل

An Artificial Neural Network Model for Prediction of the Operational Parameters of Centrifugal Compressors: An Alternative Comparison Method for Regression

Nowadays, centrifugal compressors are commonly used in the oil and gas industry, particularly in the energy transmission facilities just like a gas pipeline stations. Therefore, these machines with different operational circumstances and thermodynamic characteristics are to be exploited according to the operational necessities. Generally, the most important operational parameters of a gas pipel...

متن کامل

Improving biological activity prediction of protein kinase inhibitors using artificial neural network and partial least square methods

Introduction: Protein kinase causes many diseases, including cancer; therefore, inhibiting them plays an important role in the treatment of many diseases. Traditional discovery inhibitors of this enzyme is a time-consuming and costly process. Finding a reliable computer-aided drug discovery tools which can detect the inhibitors will reduce the cost. In this study, it is attempted to separate ki...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017